Ce circuit est très important , il permet de transformer des résistances basses en hautes, ou inversement.
On a la relation approchée, d’autant plus précise que Q est grand :
r . R = carré de Z
Z étant le module de Z et de C, puisqu'ils sont égaux en module, à la résonance.
Exemple : à F = 160 MHz , j’ai les réactances Z de L et de C égales à Z= 100 ohms, si j’ai une résistance en série de 5 ohms, alors la résistance vue en parallèle sera de 2000 ohms environ. Et réciproquement, si je place une résistance en parallèle R= 2000 ohms, je verrai une résistance en série r = 5ohms.
Ce circuit d’adaptation est le plus connu, il permet de transformer des résistances moyennes ou élevées . La figure 11 donne le schéma d’un tel circuit. Les résistances d’entrée et de sortie se font en parallèle sur des condensateurs qui vont à la masse.
Il faut y reconnaître la maille , un circuit LC composé de la self et des deux capacités en série. La fréquence de résonnance se calcule donc avec la self L et les capacités C1 et C2 en série.
A la fréquence de résonance, ce circuit se comporte comme un transformateur qui transforme R1 en R2 ( ou l’inverse) par la relation :
R2 / R1 = carré de ( C1/C2)
Exemple : un circuit en pi dont la capacité en sortie est le double de la capacité en entrée transforme la résistance d’entrée en une résistance 4 fois plus faible en sortie. ( à la fréquence de résonance, bien sur)
Ce circuit Figure 12 permet de transformer des résistances moyennes et grandes. On voit qu’on divise la self en deux selfs en série. La fréquence de résonance se calcule évidemment avec C et la self L totale constituée par les deux selfs L1 et L2 en série. Les résistances aux bornes de chaque self sont entre elles comme le carré du rapport des selfs :
Si L = L1 + L2
R/R2 = carré de (L/L2)
Par exemple, si la self L2 côté masse est la moitié de la self L1 qui va au point chaud, alors L2 est le tiers de la self totale... Dans ce cas, la résistance d’entrée R2 sera la résistance parallèle totale R ( résistance au point chaud) divisée par 9.
A noter qu’il est également possible d’utiliser une seule self, avec une prise intermédiaire. Le rapport des résistances sera alors donné par le carré du nombre de spires. (Cette configuration ressemble à un "auto- transformateur" classique, mais l'accord par C est nécessaire. )
Le pont diviseur capacitif.
Le principe du pont diviseur capacitif est le même que pour le pont diviseur inductif, mais ici, on divise la capacité d’accord C en deux capacités en série C1 et C2.
R2/R = carré de ( C/C2)
Bien sur, la capacité C qui accorde la self sur la fréquence de résonance est constituée des deux capacités en série.
Par exemple, si la capacité C2 côté masse est le triple de la capacité C1, alors C2 est quatre fois la capacité totale, et la résistance d’entrée R2 sera la résistance en parallèle sur la self R divisée par 16.
Ce circuit peu connu est pourtant souvent le plus intéressant et d’emploi très souple. L'adaptation par capacité en tête est certainement l’un des moyens les plus simples de transformer les impédances. Il permet d’adapter des impédances hautes, à des impédances plutôt basses.
La figure ci-contre montre une capacité d’impédance Z issue du point chaud du circuit. Si R est la résistance au point chaud, la résistance r est telle que
r.R = carré de Z
Par exemple,
Il faut commencer par se donner R, la résistance équivalente au point chaud .
si R = 5000 ohms, et si cette capacité de sortie a une impédance Z = 500 ohms, alors r = 50 ohms.
On voit que c’est cette d’impédance « Z » seule qui détermine le rapport de transformation.
Quant au deux composants L et C, ils seront choisis pour obtenir la résonance à la fréquence considérée : Plus leurs impédances respectives seront faibles, plus le Q augmentera.
Si la capa C en parallèle sur la self est nulle, la self aura la valeur maximale et on retrouve le circuit en L classique vu en premier. ( transfo série –parallèle) .
Voici quelques exemples numériques pour résumer :
On remarquera qu'il existe deux façons de connecter une charge résistive à un circuit LC :
Les ponts diviseurs, capacitifs ou inductifs, le circuit en pi, correspondent à des "charges "parallèles" , ce qui signifie que les charges R sont en parallèle sur un élément réactif. ( voir chapitre 2)
Notons qu'on n'obtiendra jamais une résistance parallèle R inférieure à la résistance "série" du circuit LC.
Si on veut des résistances faibles, il faudra placer cette résistance "en série" : côté "série" d'un circuit en L, ou bien utiliser un circuit en té, comme ci-dessous, où les charges sont en série....
Autre remarque : Lorsque la charge est adaptée à la source, charge et source provoquent le même amortissement du circuit LC.
Exemple de charges série : le circuit en Té passe bas.
Ce circuit permet d’adapter des résistances plutôt basses . Ici, il faut considérer que les charges d’entrée et de sortie sont en série avec les inductances. La fréquence de résonnance du circuit se calcule avec C et les deux selfs en parallèle. La relation de transformation est alors : r1 /r2 = carré de ( L1/L2)
Par exemple, si L1 est le double de L2, si on a 5 ohms connectés côté L2, on aura 20 ohms vus côté L1.
Il existe encore d’autres configurations d'adaptation par circuit LC, permettant de transformer les résistances. Notamment, en permutant les selfs et les capacités, on aura des circuits passe haut à la place des circuits passe bas. Cela signifie qu’en dehors de la fréquence de résonance, un circuit passe haut atténuera moins les fréquences élevées, et inversement.
Par exemple, les circuits d’accord de sortie d’un émetteur radio seront en général à configuration « passe bas » pour éliminer les harmoniques : Pi passe bas ou Té passe bas. .
On sait qu'un tronçon de ligne quart d'onde permet de transformes un résistance en une autre, (voir le chapitre sur les lignes de transmission) . Ce qu'on sait moins, c'est que la structure en pi ci-contre est équivalente à une ligne quart d'onde d'impédance caractéristique 50 ohms, autour de sa fréquence de fonctionnement ( pas sur les harmoniques) . Cette cellule particulière pourra remplacer une ligne quart d'onde en économisant de la place, en particulier aux fréquences basses.
Ce pi peut aussi servir de déphaseur 90 degrés, si les entrées / sorties sont en 50 ohms.
Voici quelques exemples d'adaptation par circuit LC " Pi quart d'onde", qui transforment une résistance en une autre résistance.
Notons qu'ils sont symétriques, ce qui signifie que contrairement aux transformateurs classiques vus plus haut, on peut permuter résistances d'entrée et résistance de sortie... Si par exemple 20 ohms en entrée donnent 500 ohms en sortie, alors si je mets 500 ohms en entrée, j'ai 20 ohms en sortie.
Les cours sont assez complets sur l’utilisation de l'abaque de Smith pour l'adaptation par circuit LC. Voyez le chapitre "les lignes de transmission" pour le repérage d'une impédance sur l'abaque, si vous n'êtes pas familiarisé avec l'abaque de Smith. L'abaque sera aussi très utile si la source ou la charge ont des partie réactives....
Nous allons prendre un seul exemple simple : Transformer une résistances r de 12,5 Ohms en R = 50 ohms, à F = 160 MHz.
Si je veux appliquer la formule précédente avec un circuit en "L", l’impédance de la self L et de la capacité C devrait être Z telle que Z2 = 12,5 . 50
donc Z = 25 ohms pour la self et la capacité .
Mais on voit alors que Q = 50/25 = 2 qui est faible. L’abaque de Smith va nous donner les valeurs plus exactes.
Nous prenons un abaque normalisé à 50 ohms.
Nous partons donc de la résistance r : Nous avons Z = 12,5 ohms + 0 j
Ce qui se traduit une impédance "réduite" z = 12,5 /50 + 0 /50 j = 0,25 + 0j
Ce qui donne le point A.
Nous ajoutons une réactance positive 0,43 j pour arriver au point z2.
Nous passons en admittance en prenant le symétrique par rapport au centre.
Nous obtenons le point y2 = 1 + 1,7 j
Pour arriver au centre du diagramme ( y = 1 ou z =1 , le centre correspond à 50 ohms en admittance comme en impédance) nous ajoutons une admittance 1,7 j
La réactance positive 0,43 j est une self série de 21,5 ohms, donc L = 21 nH
L’admittance positive de 1,7 j est une capacité parallèle de 28 ohms, donc une capacité C de 35 pF. (Cette valeur est théorique, en pratique ce sera moins, pour tenir compte de sa self série.)
Remplacer la self par une ligne ?
Pour les fréquences élevées, on pourrait remplacer la self L par une ligne. Si cette ligne est très courte rapport au quart d'onde, on s'aperçoit qu'il n'y a pas une grande différence . Dans notre exemple ci-dessus, nous partons de A et tournons pour arriver sur le cercle orange:
Avec une self, c'est le trajet en noir:
A-->Z2, , sur une trajectoire à partie réelle constante.
Avec une ligne, nous tournons autour du centre , selon l'arc de cercle rouge. Il faudra un petit peu moins de capacité, c'est normal, la ligne en apporte déjà un peu...
Très large bande :
Si on désire élargir la bande, on pourra mettre l’un derrière l’autre deux transformateurs en L, en passant par une résistance intermédiaire moyenne géométrique des deux résistances d’extrémités. Voir par exemple l'adaptation d'entrée dans le chapitre 12 "Exemple :Un ampli UHF de puissance".
Lorsque la bande dépasse une octave, il est nécessaire d’utiliser des transformateurs utilisée sur les fréquences plus basses , composés de deux enroulements sur un tore de ferrite. Mais aux fréquences UHF, et au delà, les pertes des ferrites peuvent être importantes, et on pourra utiliser des lignes couplées très serrées composées de câbles coaxiaux ou de fil torsadé.
On obtiendra un meilleur filtrage avec des circuits d'ordre supérieur à deux. Le chapitre 5 suivant indique comment "coupler" des circuits LC ...
En général, on cherche à transférer le maximum de puissance d'une "source" ou "générateur" vers une "charge"
On sait que le transfert de puissance sera maximum , ( on dit qu'on est "adapté" ) quand la résistance de la source est égale à la résistance de la charge. C'est ce qu'on tente de faire, et cette résistance, c'est en général 50 ohms.
Nous avons jusqu'à présent considéré que la source et la charge étaient des résistances pures, sans partie réactive....
Mais il arrive que la source ou la charge présente une impédance avec une partie "réactive" ( imaginaire ) .
La méthode sur l'abaque de Smith ne change pas, on part d'un point qui peut être n'importe où su l'abaque, pour arriver à un point qui peut aussi être n'importe où.
Mais attention, pour réaliser l'adaptation, il faudra alors que la charge et la source présentent des impédances dites "conjuguées", c'est à dire de parties imaginaires opposées. Par exemple, si une charge présente une impédance de 40 ohms + j 70 ohms, alors l'impédance de la source devra être 40 ohms - j 70 ohms.
Cette règle de l'impédance conjuguée se comprend très facilement: On peut modéliser la partie +jX par une inductance, et la partie -jX par une capacité. Quand on réalise la connexion, l'inductance et le condensateur forment dans la maille un circuit série d'impédance nulle et il reste les deux résistances R qui sont adaptées...